
1

Connie Heitmeyer
Center for High Assurance Computer Systems

Naval Research Laboratory
Washington, DC

Software Tools for Building
Assured Software Systems

TH35: Software-Based Tools for the
Development of Digital Safety Systems

March 15, 2011

NRC’s 25th Annual Regulatory Information Conference
North Bethesda, Maryland

2
3/20/2012

OUTLINE

• The current state of software

• Tools for building assured software

• Applying tools to practical systems: Examples

• Providing evidence of software assurance
• E.g., assurance of safety

• Future directions in software development

• Summary and conclusions

THE CURRENT STATE OF

SOFTWARE

2

4
3/20/2012

SOFTWARE IS EVERYWHERE

5
3/20/2012

Example: Automobiles
 In 1981, GM passenger cars contained ~50 KLOC

 Today’s average car contains more than 1 MLOC

 Today’s premium class car estimated to contain100 MLOC!

Dramatic Increase in Size and Complexity
of Software in Industrial Systems

Engine Control

Sole Automotive Function
Supported by Software in 1981:

Automotive Functions Supported by Today’s Software
Air Bag System Antilock Brakes Automatic Transmission

Alarm System Climate Control Collision Avoidance

Cruise Control Communication System Dashboard Instrum.

Electronic Stability Control Engine Ignition Engine Control

Electronic Seat Control Entertainment System Navigation

Power Steering Tire Pressure Monitoring Windshield Wiper Control

6
3/20/2012

Dramatic Increase in
Software Complexity: Military Systems:

Year Aircraft % of Pilot Functions

1960 F-4 8%

1982 F-16 45%

2000 F-22 80%

In Testing F-35 90%

Software in Military Aircraft

3

7
3/20/2012

SOFTWARE FAILURES
IN DEFENSE SYSTEMS

new navigation software caused six of
seven total system aborts.

Details Emerge On Army’s
Failed NLOS-LS Missile

In testimony before lawmakers yesterday,
David Duma…detailed failings of the Army
Non-Line of Sight Launch System (NLOS-
LS). During most recent tests in February,

Defense Tech, April 16, 2010

“ ‘Friendly Fire’ Deaths Traced to Dead Battery: Taliban
Targeted, but US Forces Killed,” Wash. Post, 22 Mar. 2002

The soldier and three comrades were killed in the
incident.

A U.S. soldier in Afghanistan used a Precision
Lightweight GPS Receiver to set coordinates for an
air strike. Seeing that the “battery low” warning light
was on, he changed the battery, then pressed “Fire.”
The device was designed, on starting or resuming
operation after a battery change, to initialize the
coordinate variables to its own location…

Navy Drone Violated
Washington Airspace
By ELISABETH BUMILLER

Published: August 25, 2010
WASHINGTON — The skies over
the nation’s capital are crowded with
presidential aircraft, military flyovers
and the Delta shuttle, but this month a
strange new bird was briefly among
them: a United States Navy drone that
wandered into the restricted airspace
around Washington before operators
could stop it. The Navy is calling the
problem a “software issue” that
foiled the drone’s operators.

8
3/20/2012

MANY OTHER EXAMPLES OF
SOFTWARE FAILURES*

Aviation: Many recent incidents show risks due to software
 1997 crash of Korean 747 in Guam: 200 deaths that probably

could have been avoided if altitude warning system had been
configured correctly

 2004 air traffic control outage, Palmdale, CA: disrupted 800 flights
– Prevented any voice communications between controllers and aircraft
– Aircraft violated minimum separation distance five times; only because

of airline collision avoidance systems that no collisions occurred

Medical Devices: Failures in medical devices can be lethal
 From 1990-2000, safety recalls of pacemakers and implantable

defibrillators due to software problems affected over 200,000
devices

 FDA study: From 1992-98, 242 of 3,140 device recalls were due to
faulty software (80%+ due to defects introd’d in maintenance)

*Jackson+, Software for Dependable Systems: Sufficient Evidence?, NAS, 2007.

9
3/20/2012

 NPP digital safety systems are
experiencing the same growth in
software size and complexity

 Under development are new and
upgraded NPPs with much more
software control and automation

– Highly complex systems becoming
even more complex

– Many new features being added

 Of major concern: The safety of new
and upgraded software in NPPs

NEW AND UPGRADED NPPS
CONTAIN MUCH MORE SOFTWARE!

4

10
3/20/2012

SAFETY IN NPP SOFTWARE

How can NPP vendors learn from the
experiences of others in the

software community and
not repeat the same mistakes?

CHALLENGE How to obtain assurance that
complex NPP software satisfies
critical safety properties

TOOLS FOR

BUILDING ASSURED

SOFTWARE SYSTEMS

12
3/20/2012

System Modeling & Analysis:
APPROACH

• We have developed a mathematically based method called
SCR for modeling and analysis of critical systems (Heitmeyer+,
1996), (Heitmeyer+, 2005).

SCR: Software Cost Reduction

• The method provides
software developers
with tools for
- building a system

model
- simulating the system

behavior by executing
the model

- analyzing the model for
properties of interest

5

13

FORMULATE
SYSTEM
MODEL

Use a
notation with an
explicit formal
semantics to
represent the

required
behavior

APPLY
“CONSISTENCY

CHECKING”

Automatically
check model for

syntax/type errors,
missing cases,

nondeterminism,
circular defs, etc.

SIMULATE
THE

SYSTEM
BEHAVIOR

Symbolically
execute the

system based
on the

(executable)
model

SCR: SOFTWARE TOOLS FOR
DEVELOPING CRITICAL SOFTWARE

As we move down the
chain, we increase

confidence in the model VERIFY
MODEL USING

THEOREM PROVING

VERIFY
MODEL USING

MODEL CHECKING

Check
critical

application
properties

• Usable, scalable notation
• Integrated set of robust, powerful tools

– light-weight tools whose use does not
require math. sophistication/thm proving

– heavy-duty tools (e.g., theorem prover)

SCR: Software Cost Reduction

APPLYING TOOLS TO

PRACTICAL SYSTEMS:

EXAMPLES

15
3/20/2012

Analysis of
1. completeness and determinism in software

models for two avionics systems

2. safety properties in software for a Navy
system

USING TOOLS TO MODEL AND
ANALYZE PRACTICAL SYSTEMS

EXAMPLES

6

16
3/20/2012

Consistency checking of the A-7 requirements document
 Document contains a complete spec of the requirements of the

A-7 aircraft’s Operational Flight Program
– Checked manually for errors by two independent review teams

 Results of applying our consistency checker
– Check of 36 function definitions

 Results: 17 missing cases detected
– Checked a total of 4319 logical expressions

 Results: 57 instances of non-determinism detected

MODELING + AUTOMATED CHECKING
OF A NAVY SOFTWARE SPEC

Consistency checking finds MANY errors that human inspections
miss and does so very quickly (seconds to minutes)

Doppler_up’ WHEN [NOT CA_stage_complete AND
latitude > 70 deg. AND NOT present_position_entered

AND NOT latitude > 80 deg. AND IMSMODE=Gndal]

Example: Input that could trigger transition from Inertial mode
to either Doppler_Inertial or Air_Alignment mode

17

Rockwell Aviation’s Flight Guidance System (FGS)
 Experimental application of SCR tools by Rockwell
 Despite extensive reviews by Rockwell, the tools found many

errors in the FGS spec
– 28 errors detected, “many of them significant”
– one third each: 1) constructing the spec, 2) applying the consistency

checker, and 3) simulating the system behavior

Example: Disjointness error leading to two possible flight modes
Example: Missing cases (Lateral Armed Annunciation field

undefined in certain cases)

“...preliminary execution of the specification and
completeness and consistency checking [with the

SCR tools] has found several errors in a
specification that represented our best effort at

producing a correct specification manually.”

Steve Miller
Rockwell-Collins Aviation

MODELING + AUTOMATED CHECKING
OF A COMMERCIAL SOFTWARE SPEC

18
3/20/2012

MODELING + AUTOMATED CHECKING
FOR SAFETY PROPERTIES

WEAPONS CONTROL PANEL
• Used to monitor the status & prepare

the launch of weapons
• Sizable, complex program (~30 KLOC)
• System inputs

– switches and dials
– numeric quantities (read by

sensors)
• System outputs

– lights
– doors and valves (set by actuators)

• Contractor spec of WCP software
requirements contains 250+ variables

• Required to satisfy six safety
properties

Weapons Control Panel (WCP)
for a Navy system

Weapons Control Panel

Weapons Control Panel

7

19
3/20/2012

CHECKING THE WCP MODEL FOR
SAFETY PROPERTIES: RESULTS

Analysis of the WCP model with our tools showed
that the model violated all six safety properties!
• Finding these violations manually would have been

extremely difficult since the model is so large

• For large models, need software tools

Opening the Torpedo Tube Vent Valve shall be prevented unless
the Missile-to-Torpedo-Tube differential pressure is within safe limits

One of the
six safety
properties

safe region

20
3/20/2012

CHECKING THE WCP MODEL FOR
SAFETY: REQUIRED EFFORT

Small effort required was surprising given that
 The contractor model was large and complex

 The contractor had no prior knowledge of the SCR
notation and method

TASK PERSON
WEEKS

Translate contractor spec into SCR 0.8

Use tools to detect syntax and type errors,
missing cases, etc.

0.2

Correct errors 0.3

Detect safety violations 0.8

TOTAL 2.1

PROVIDING EVIDENCE OF

SOFTWARE ASSURANCE

8

22
3/20/2012

ROLE OF TOOLS
IN BUILDING ASSURED SOFTWARE

 A model provides a basis for tool-based analysis
– Consistency checkers detect missing cases/non-determinism
– Simulators can help validate the model
– Verifiers can prove properties of the model or show that the

model does not satisfy desired properties

 Using tools exposes errors that humans miss, e.g.,
– Missing cases
– Unwanted non-determinism
– Violations of critical properties, such as safety properties

 Unlike humans, tools can analyze large, complex models
 Using a tool to construct a model can expose errors

– Process of creating a model often exposes errors
 Example: Errors detected in formulating models of NASA software

WHILE TOOLS ARE USEFUL,
THEY ARE NOT ENOUGH

 A natural language version of the model and
properties can be extremely valuable
– For validating the model

– For validating the assumptions

 Discussion of the model and properties with
stakeholders can lead to important modifications
– Remove/Fix incorrect assumptions

– Correct the model

– Correct the statement of properties

– Suggest new (safety) properties

FUTURE DIRECTIONS IN

SOFTWARE DEVELOPMENT

9

TRENDS IN SOFTWARE DEVELOPMENT:
MODEL-BASED APPROACHES

 Use of model-based software development growing
– Military systems
– Automobile Industry

 Goals: To provide
– A precise statement of the required software behavior

 A system model
 The set of properties, e.g., safety, the system must satisfy

– Software assurance
 Software testing
 System simulation
 Formal proofs
 Demonstration that behavior of software code

corresponds to behavior specified by model

Different
forms of
evidence

MODEL-BASED SOFTWARE DEVELOPMENT:
CURRENT STATUS

Source
Code

Concrete
Model

Code
Evaluation

Testing

constructed
manually

generated
automatically

largely
manual

State of
the practice

Abstract Model
of Required
Behavior

Simulation
Formal Verif.

Consistency
CheckingModel

Analysis

constructed
manually

automatic

State of
the art

Safety Properties

MODEL-BASED SOFTWARE DEVELOPMENT:
FUTURE VISION

Abstract Model
of Required
Behavior

Simulation
Formal Verif.

Consistency
CheckingModel

Analysis

Constructed
using tools

automatic

Safety Properties

Source
Code

Code
Evaluation

Formal Verif.
Dynamic

Monitoring

Testing
Generated/proven correct

automatically

Simulationlargely
automated

translation
validation

Concrete
Model

Constructed/proven correct
automatically

translation
validation

Hardware
Constraints

10

SUMMARY AND

CONCLUSIONS

CONCLUDING REMARKS

 Tools can be extremely useful in developing, evaluating,
and changing software for NPPs

– Find errors human inspections miss (e.g., missing cases)
– Help user validate a model
– Detect safety violations
– Support formal verification of safety properties

 Major contribution of tools: Liberate people to do the hard
intellectual work required to build high quality models + software

– The “combination of human analysis and tool-based analysis is
more powerful than either alone…” John Rushby, SRI

 Tools are not enough
– Precise natural language versions of model are invaluable

– Improved languages and models are needed

NEED FOR NEW RESEARCH

 Model-based approaches are increasingly being
used to develop software
– Military systems
– Automobile Industry

 New research and technology is needed
– Tools to aid users in eliciting system and software

requirements
– Tools to help users build models
– Tools for proving that software code satisfies a model or

a set of specified properties

